

Population and Welfare: The Greatest Good for the Greatest Number

Pete Klenow, Chad Jones, Mark Bils, and Mohamad Adhami

May 2023

Motivation

- Economic growth is typically measured in per capita terms
 - Puts zero weight on having more people extreme!
- *Hypothetical:* Two countries with same *TFP*_t. One has constant *N* but rising *c*, the other has constant *c* but rising *N*.
 - Example: Japan is 6x richer p.c. than in 1960, while Mexico is 3x richer But Mexico's population is 3x larger than in 1960 vs. 1.3x for Japan
 - Example: Population growth over thousands of years
- Key Question:

How much has population growth contributed to aggregate welfare growth?

Examples of how this could be useful

- The Black Death, HIV/AIDS, or Covid-19
- China's one-child policy
- What fraction of GDP should we spend to mitigate climate change in 2100?
 - How many people today versus in the year 2100?

- How much to spend to avoid existential risks (asteroids, nuclear war)?
 - Many billions of people-years in the future

- We use the MRS in aggregate welfare between people *N* and per capita *c*
- Answering other key questions would require the social MRT from the production side (externalities from ideas, human capital, pollution)
 - Optimal fertility?
 - Was the demographic transition good or bad?
- Our approach is just accounting with total welfare need fewer assumptions

- Part I. Baseline calculation with only population and consumption
- Part II. Adjusting for migration (who gets credit?)
- Part III. Incorporating parental altruism and endogenous fertility

Part I. Baseline calculation with only population and consumption

- Setup
 - \circ *c*_t consumption per person
 - $\circ u(c_t) \ge 0$ is flow of utility enjoyed by each person
 - N_t identical people
- Summing over people \Rightarrow aggregate utility flow

 $W(N_t,c_t)=N_t\cdot u(c_t)$

- Non-existence is valued at zero
- Assumes "utility when not born" = "utility when dead"

Total utilitarianism

- Critiques
 - Repugnant conclusion (Parfit, 1984)
 - Inalienable rights
- Versus per capita utilitarianism
 - e.g. Jones and Klenow (2016)
 - Sadistic conclusion
- Zuber et al. (2020), De la Croix and Doepke (2021), MacAskill (2022)

Growth in consumption-equivalent aggregate welfare

$$\frac{dW_t}{W_t} = \frac{dN_t}{N_t} + \frac{u'(c_t)c_t}{u(c_t)} \cdot \frac{dc_t}{c_t}$$

- v(c) = value of having one more person live for a year
 expressed relative to one year of per capita consumption
- 1 pp of population growth is worth v(c) pp of consumption growth

• Using the EPA's VSL of \$7.4m in 2006:

$$v(c) \equiv \frac{u(c)}{u'(c) \cdot c} = \frac{\mathsf{VSLY}}{c} \approx \frac{\mathsf{VSL}/e_{40}}{c} \approx \frac{\$7,400,000/40}{\$38,000} = \frac{\$185,000}{\$38,000} \approx 4.87$$

 $\circ~$ 1 pp population growth is worth \sim 5 pp consumption growth

Measuring v(c) in other years and countries

• Baseline: Assume $u(c) = \bar{u} + \log c$

$$v(c) \equiv \frac{u(c)}{u'(c) \cdot c} = u(c) = \bar{u} + \log c$$

Higher consumption raises the value of a year of life

- Calibration:
 - Normalize units so that $c_{2006, US} = 1$
 - Then $v(c_{2006, US}) = 4.87$ implies $\bar{u} = 4.87$

Alternative calibrations of \bar{u}

- Baseline assumes $v(c_{2006, US}) = 4.87 \rightarrow \bar{u} = 4.87$ when normalize $c_{2006, US} = 1$
- Consider values from meta studies by Viscusi (1993), Viscusi and Aldy (2003)
 Based on U.S. labor-market risks and expressed in \$USD for 2000
- Median across all studies they discuss is \$5 million
 - Assume 40 years of life expectancy, year 2000 consumption of \$29,000
 - Yields $v(c_{2000,US}) = 4.30 \rightarrow \bar{u} = 4.44$ when $c_{2006,US} = 1$
- Median across their set of *preferred* studies is \$7 million
 - Yields $v(c_{2000, US}) = 6.02 \rightarrow \bar{u} = 6.16$ when $c_{2006, US} = 1$

v(c) across countries in 2019

$$g_{\lambda} = v(c) \cdot g_N + g_c$$

 λ is consumption-equivalent welfare

 g_N is population growth

 g_c is the growth rate of per capita consumption

- If v(c) = 1, then CE-Welfare growth is just aggregate consumption growth
- But v(c) = 3 or 5 implies much larger weight on population growth

Penn World Tables 10.0

Years	# of OECD countries	# of non-OECD countries
1960-2019	38	63

Maddison (2020), BEA, Barro and Ursua (2008)

Years	Sample
1840-2018	United States
1850-2018	The "West"
1500-2018	The World

Overview of baseline results for 101 countries from 1960 to 2019

Average $g_c = 2.1\%$ and average $g_N = 1.8\%$ across the 101 countries

	Baseline — Robustness						
	$\bar{u} = 4.87$	$\bar{u} = 4.44$	$\bar{u} = 6.16$				
CE-Welfare Growth	6.2%	5.4%	8.5%				
Contribution of population	4.1%	3.3%	6.4%				
Average value of life $v(c)$	2.7	2.3	4.0				
Pop Share of CE-Welfare Growth	66%	63%	73%				
Pop Share (if weight by population)	51%	46%	62%				
# of countries with pop share $\geq 50\%$	78	69	89				

Decomposing welfare growth in select countries, 1960–2019

	g_{λ}	8c	g_N	v(c)	$v(c) \cdot g_N$	Pop Share
Mexico	8.6	1.8	2.1	3.4	6.8	79%
Brazil	7.9	3.1	1.8	2.8	4.8	61%
South Africa	7.9	1.4	2.1	3.1	6.4	82%
United States	6.5	2.2	1.0	4.4	4.3	66%
China	5.7	3.8	1.3	1.8	2.0	34%
India	5.3	2.6	1.9	1.6	2.8	52%
Japan	4.9	3.2	0.5	3.8	1.7	34%
Ethiopia	4.4	2.5	2.7	0.7	1.9	44%
Germany	3.8	2.9	0.2	4.0	0.8	22%

Average CE welfare growth for select countries, 1960–2019

Some big differences in percentiles, 1960–2019 growth

PERCENTILE

Plot of CE-Welfare growth against consumption growth, 1960-2019

CE WELFARE GROWTH

Contribution of Population Growth

12% Jordan 10% Israel 8% Singapore Equatorial Guinea Gabon Côte d'Ivoire Mexico Gambia South Africa Malaysia Australia 6% Honduras Turkey Kenya Luxembourg • Canada Zambia • Zimbabwe U.S. Tunisia Tanzania 4% Taiwan 0 Niger Switzerland Madagascar Indonesia D.R. Congo Norway Malawi Rwanda Bangladesh France Sweden 2% UK Ethiopia Uruguay Burundi Barbados Nepal Japan Italy Portugal Germany 0% Romania -2% 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4%

POPULATION TERM IN CEWGROWTH

POPULATION GROWTH

Robustness to constant v(c) = 2.7, **1960–2019**

Scatterplot with constant v(c) = 2.7, 1960-2019

CE WELFARE GROWTH

Average CE welfare growth for select countries, only for 1980–2019

25

Average CE welfare growth for select countries, only for 2000–2019

Average CE welfare growth by region, 1960–2019

Average annual growth in Japan

Average annual growth in China

29

Average annual growth in Sub-Saharan Africa

Trends over the long run for the U.S. (1820–2018)

U.S. cumulative growth, 1820–2018

Part II. Adjusting for migration

Aggregation to deal with immigration

- Should countries receive "credit" for population growth from immigration?
- Affects the Western Hemisphere vs. Europe in past century-plus
- Looking at "The West" as a whole should mitigate this problem
 - Includes Europe and the Americas

• We do so back to 1850 to encompass the Age of Mass Migration

Cumulative growth in "The West", 1820-2018

INDEX (1820=1)

West CE-Welfare growth over the long run, 1820-2018

World CE-Welfare growth over the long run, 1500-2018

World cumulative growth, 1500-2018

Adjusting country welfare for migration

$$W_{it} = N_{it} \cdot u(c_{it}) + \sum_{j \neq i} N_{i \rightarrow j,t} \cdot u(c_{jt}) - \sum_{j \neq i} N_{j \rightarrow i,t} \cdot u(c_{it})$$

• $N_{i \rightarrow j,t}$ = population born in country *i*, living in country *j* in year *t*

• $N_{j \rightarrow i,t}$ = population born in country *j*, living in country *i* in year *t*

Could also explore intermediate cases

Growth in country welfare adjusted for migration

$$g_{\lambda_{it}} = v(c_{it}) \cdot g_{N_{it}} + g_{c_{it}}$$

$$+ \sum_{j \neq i} \frac{N_{i \rightarrow j,t}}{N_{it}} \cdot \frac{u(c_{jt})}{u(c_{it})} \left(v(c_{it}) \cdot g_{N_{i \rightarrow j,t}} + \frac{v(c_{it})}{v(c_{jt})} \cdot g_{c_{jt}} \right)$$
$$- \sum_{j \neq i} \frac{N_{j \rightarrow i,t}}{N_{it}} \left(v(c_{it}) \cdot g_{N_{j \rightarrow i,t}} + g_{c_{it}} \right)$$

- Our baseline credits all immigrants to destination country
- Migration adjustment credits them to source country instead

Summary of migration results

- Have the necessary data for 81 countries from 1960 to 2000
- Results with and without the migration adjustment highly correlated at 0.92
- But the adjustments for individual countries can be large $\sim 2pp$
- Average absolute adjustment is 0.6pp

Source: The World Bank's Global Bilateral Migration Database

Baseline vs. Migration-Adjusted CEW growth

MIGRATION ADJUSTED 14% Israel 12% Botswana Mexico Dominican Republicatia 10% NET OUT-MIGRATION Cabo Verde Malaysia Costa Rica Cyprus 🖗 Equatorial Guinea 🖷 Hong Kong South Africa Singapore Iamaica 8% a emar Gabon Côte d'Ivoire El Salvadorte Australia Portue 6% United States • Barbados Sri La Haiti 😐 Switzerland 4% Luxemboure **NET IN-MIGRATION** Bangladest 2% DR. of the Coneo 0% 0% 2% 4% 6% 8% 10% 12% 14%

BASELINE

Migration correction vs Baseline CEW growth

Countries for which in-migration biases our baseline upward

Countries for which out-migration biases our baseline downward

Part III. Parental altruism and endogenous fertility *a la* Barro-Becker (1989)

- Parents have kids because they love them missing in our baseline
 - Account for reduced fertility on parental welfare (Cordoba, 2015)
- But falling fertility may be compensated by higher per capita utility:
 - \circ Quantity / quality trade-off \implies fewer but "better" kids
- Accordingly, extend framework to incorporate:
 - Broader measure of flow utility, including quantity/quality of kids
 - o Privately optimal fertility, consumption, and time use by parents

$$W(N_t^p, N_t^k, c_t, l_t, c_t^k, h_t^k, b_t) = N_t^p \cdot u(c_t, l_t, c_t^k, h_t^k, b_t) + N_t^k \cdot \widetilde{u}(c_t^k)$$

- N^p = number of adults
- N^k = number of children
- *b* = number of children per adult

 $\implies N = N^p + N^k = (1+b) \cdot N^p$

- *c* = adult consumption
- *l* = adult leisure
- c^k = child consumption
- h^k = child human capital

Consumption equivalent welfare:

$$W(N_{t}^{p}, N_{t}^{k}, \lambda_{t} \cdot c_{t}, l_{t}, \lambda_{t} \cdot c_{t}^{k}, h_{t}^{k}, b_{t}) = W(N_{t+dt}^{p}, N_{t+dt}^{k}, c_{t+dt}, l_{t+dt}, c_{t+dt}^{k}, h_{t+dt}^{k}, b_{t+dt})$$

Parental utility maximization problem

$$\max_{c, l, c^k, h^k, b} u(c_t, l_t, c^k_t, h^k_t, b_t)$$

subject to: $c_t + b_t \cdot c^k_t \le w_t \cdot h_t \cdot l_{ct}$
 $h^k_t = f_t(h_t \cdot e_t)$ and $l_{ct} + l_t + b_t \cdot e_t \le 1$

- w = wage per unit of human capital
- h = parental human capital, equals inherited h^k
- l_c = parental hours worked
- *e* = parental time investment per child

Parents' vs. Kids' Consumption

- Make two assumptions on preferences:
 - Assumption 1: $u(c_t^p, c_t^k, \vec{x}_t) = \log(c_t^p) + \alpha b_t^{\theta} \log(c_t^k) + g(l_t, b_t, h_t^k)$
 - Assumption 2: $\tilde{u}(c^k) = \bar{u}_k + log(c_t^k)$
- With these assumptions: $\frac{c_t^k}{c_t^p} = \alpha b_t^{\theta-1}$ • For $\theta < 1$, $\frac{c_t^k}{c_t^p}$ falls with b_t
 - Conditional on calibrating α and θ , do not need data on trends in $\frac{c_t^k}{c_t^p}$

Consumption-equivalent welfare growth

$$g_{\lambda_t} = \mathsf{pop_term}_t + \pi_t^p \cdot \left(\frac{dc_t^p}{c_t^p} + u_{l_t}l_t \cdot \frac{dl_t}{l_t} + u_{h_t^k}h_t^k \cdot \frac{dh_t^k}{h_t^k} + u_{b_t}b_t \cdot \frac{db_t}{b_t}\right) + (1 - \pi_t^p) \cdot \frac{dc_t^k}{c_t^k},$$

where $\pi_t^p = \frac{N_t^p}{(1 + \alpha b_t^p)N_t^p + N_t^k}$
 $\mathsf{pop_term}_t = \frac{1 + b_t}{1 + \alpha b_t^p + b_t} \left[\frac{N_t^p}{N_t^k + N_t^p} \cdot \frac{dN_t^p}{N_t^p} \cdot v(c_t^p, \dots) + \frac{N_t^K}{N_t^K + N_t^p} \cdot \frac{dN_t^K}{N_t^K} \cdot \tilde{v}(c_t^k)\right]$

Two differences in the population term relative to baseline calculation:

- **1** Not imposing $\tilde{v}(c_t^k) = v(c_t, \dots)$
- 2 Altruism term $\alpha b_t^{\theta} \implies$ special case on next slide for intuition

Special case – just for intuition

• Let
$$\theta = 1 \Rightarrow \frac{dc^k}{c^k} = \frac{dc^p}{c^p}$$
 and evaluate at $\tilde{v}(c_t^k) = v(c_t^p, ...) = v(c_t)$

$$\implies g_{\lambda_t} = \frac{dc_t}{c_t} + \frac{N_t^p + N_t^k}{N_t^p + 2N_t^k} \cdot v(c_t) \cdot \frac{dN_t}{N_t} \qquad \text{Base terms} \\ + \frac{N_t^p}{N_t^p + 2N_t^k} \cdot \frac{u_{lt}l_t}{u_{ct}c_t} \cdot \frac{dl_t}{l_t} \qquad \text{Leisure} \\ + \frac{N_t^p}{N_t^p + 2N_t^k} \cdot \frac{u_{bt}b_t}{u_{ct}c_t} \cdot \frac{db_t}{b_t} \qquad \text{Quantity of kids} \\ + \frac{N_t^p}{N_t^p + 2N_t^k} \cdot \frac{u_{hkt}h_t^k}{u_{ct}c_t} \cdot \frac{dh_t^k}{h_t^k} \qquad \text{Quality of kids} \end{cases}$$

Double counting kids' consumption downweights all non-consumption terms

Implementing the generalized growth accounting

• Parents' FOCs maps relative weights in growth accounting to observables

- Calibrating η
 - Set $\eta = 0.24$
 - Sum of Mincer coefficients for parents' schooling, relative to own, for kids' wage (= .0142/.0591, Lee, Roys, Seshadri, 2014)
 Choose e_t generously (all childcare) and dh^k_t generously (all wage growth

from H) \implies generous quality growth

Kids' vs. Parents' Consumption and the Value of Life

- Calibrating α and θ for $\frac{c_t^k}{c_t} = \alpha b^{\theta}$
 - USDA (2012) study: spending on kids vs. parents, 2-parent households
 - Spending with 2 kids (b = 1) gives $\alpha = 2/3$
 - Across 1, 2, or 3 kids suggests $\theta \approx 0.8$ (also consider $\theta = .6$ and $\theta = 1$)
- Calibrate value of year of life as same for child and adult in U.S. in 2006
 - Given preferences, implies equal utility flows at that time in U.S.
 - $\circ~$ Consider robustness to $rac{ ilde{v}(c_t^k)}{v(c_t,\ldots)}=0.8~{
 m or}~1.2$
 - Allow $v(c_t,...)$ and $\tilde{v}(c_t^k)$ to evolve over time

Data to implement generalized growth accounting

- To implement calculation need series for:
 - # Children = 0-19 years old
 - # Adults = 20+ years old
 - $\circ b_t =$ Children / Adults

- l_{ct} = paid work
- $b_t e_t = \text{total child care}$
- $l_t = 16 \text{ hrs} l_{ct} b_t \cdot e_t$
- Childcare from time use is main data constraint, restrict to 4 countries:
 - US (2003–2019) Japan (1991–2016)
 - Netherlands (1975–2005)

South Korea (1999–2019)

 Additional data sources: PWT for per capita consumption and average market hours worked for ages 20-64, World Bank for population by age group

CEW Growth: Macro vs Micro

		MACRC) (MICRO											
	CEW pop cons growth term tern			CEW growth	pop term	cons term	leisure term	quality term	quantity term						
USA	5.4	3.9	1.5	5.1	3.2	1.5	0.1	0.6	-0.3						
NLD	4.5	2.5	2.0	4.9	2.6	2.0	0.1	0.7	-0.4						
JPN	2.3	0.4	1.9	2.2	0.5	1.9	0.0	0.2	-0.4						
KOR	4.4	1.7	2.6	5.0	1.9	2.6	0.6	0.7	-0.8						

Share of population in CEW growth: Macro vs Micro

	MACRO	MICRO												
		Baseline		Robu	istness ——									
			Larger θ	Smaller θ	Larger v_k	Smaller v_k								
USA	72%	62%	64%	61%	63%	62%								
NLD	55%	53%	54%	51%	52%	54%								
JPN	16%	21%	23%	20%	11%	29%								
KOR	40%	38%	40%	36%	32%	42%								

Tentative Conclusions

- Population growth contributes 1/2 to 2/3 of growth in country welfare
 - Complementary perspective to per capita consumption growth
- Because consumption runs into diminishing returns, each additional point of population growth is worth ...
 - 5pp of consumption growth in rich countries today
 - an average of 2.7pp for the world as a whole
- Results are robust to adjusting for migration and incorporating parent utility from children and privately optimal fertility choices

- Decompose population growth into fertility versus falling mortality
 - The former in poor countries, the latter in rich countries
- Incorporate Time Use data for more countries
 - Mexico, South Africa, Tanzania
- Add positive knowledge externalities and negative pollution externalities
 - Calculate socially optimal fertility

BACKUP SLIDES

Details of micro calculations for US

	Ca	se		Base	eline (Macro)					Ex	tensio	on (Mi	cro)				
Country	Theta	vk / vp (US, 2006)	CEW growth	v(c)	pop term	cons term	Pop share of growth (in %)	CEW growth	۷_P	v_k	pop term	cp term	ck term	leisure term	quality of kids term	quantity of kids term	Pop share of growth (in %)	c_p	c_k
	0.8	1						5.1	5.0	4.9	3.2	0.9	0.6	0.1	0.6	-0.3	62	1.08	0.88
	0.6	1						5.0	5.0	4.9	3.1	0.8	0.7	0.1	0.6	-0.3	61	1.03	1.02
	1	1						5.1	5.0	4.9	3.3	0.9	0.5	0.1	0.5	-0.2	64	1.13	0.75
	0.8	0.8						5.0	5.0	3.9	3.1	0.9	0.6	0.1	0.6	-0.3	62	1.08	0.88
US	0.6	0.8	5.4	4.9	3.9	1.5	72	5.0	5.0	4.0	3.0	0.8	0.7	0.1	0.6	-0.3	61	1.03	1.02
	1	0.8						5.1	5.0	3.9	3.2	0.9	0.5	0.1	0.5	-0.2	64	1.13	0.75
	0.8	1.2						5.1	5.0	5.9	3.2	0.9	0.6	0.1	0.6	-0.3	63	1.08	0.88
	0.6	1.2						5.0	5.0	5.9	3.1	0.8	0.7	0.1	0.6	-0.3	61	1.03	1.02
	1	1.2						5.2	5.0	5.9	3.3	0.9	0.5	0.1	0.5	-0.2	64	1.13	0.75

Details of micro calculations for Netherlands

	Ca	se		Base	eline (Macro)					Ex	tensio	on (Mi	icro)				
Country	Theta	vk / vp (US, 2006)	CEW growth	v(c)	pop term	cons term	Pop share of growth (in %)	CEW growth	۷_P	v_k	pop term	cp term	ck term	leisure term	quality of kids term	quantity of kids term	Pop share of growth (in %)	c_p	c_k
	0.8	1						4.9	4.9	4.2	2.6	1.2	0.9	0.1	0.7	-0.4	53	0.52	0.42
	0.6	1						4.9	5.0	4.2	2.5	1.1	1.0	0.1	0.7	-0.5	51	0.49	0.5
	1	1						4.9	4.9	4.2	2.7	1.2	0.7	0.1	0.7	-0.4	54	0.54	0.36
	0.8	0.8						5.0	4.9	3.2	2.7	1.2	0.9	0.1	0.7	-0.4	54	0.52	0.42
NLD	0.6	0.8	4.5	4.2	2.5	2.0	55	5.0	5.0	3.2	2.6	1.1	1.0	0.1	0.7	-0.5	53	0.49	0.5
	1	0.8						5.0	4.9	3.3	2.8	1.2	0.7	0.1	0.7	-0.4	55	0.54	0.36
	0.8	1.2						4.8	4.9	5.1	2.5	1.2	0.9	0.1	0.7	-0.4	52	0.52	0.42
	0.6	1.2						4.8	5.0	5.2	2.4	1.1	1.0	0.1	0.7	-0.5	50	0.49	0.5
	1	1.2						4.8	4.9	5.1	2.5	1.2	0.7	0.1	0.7	-0.4	53	0.54	0.36

Details of micro calculations for Japan

	Ca	se		Base	eline (Macro)					Ex	tensio	on (Mi	icro)								
Country	Theta	vk / vp (US, 2006)	CEW growth	v(c)	pop term	cons term	Pop share of growth (in %)	CEW growth	v_p	v_k	pop term	cp term	ck term	leisure term	quality of kids term	quantity of kids term	Pop share of growth (in %)	c_p	c_k				
	0.8	1						2.2	4.5	4.4	0.5	1.2	0.7	0.0	0.2	-0.4	21	0.58	0.51				
	0.6	1						2.3	4.5	4.5	0.4	1.1	0.9	0.0	0.2	-0.5	20	0.55	0.65				
	1	1						2.2	4.5	4.3	0.5	1.2	0.6	0.0	0.2	-0.3	23	0.61	0.41				
	0.8	0.8						2.5	4.5	3.4	0.7	1.2	0.7	0.0	0.2	-0.4	29	0.58	0.51				
JPN	0.6	0.8	2.3	4.3	0.4	1.9	16	2.5	4.5	3.5	0.7	1.1	0.9	0.0	0.2	-0.5	27	0.55	0.65				
	1	0.8						ľ		ľ		2.4	4.5	3.3	0.8	1.2	0.6	0.0	0.2	-0.3	31	0.61	0.41
	0.8	1.2						2.0	4.5	5.3	0.2	1.2	0.7	0.0	0.2	-0.4	11	0.58	0.51				
	0.6	1.2						2.0	4.5	5.4	0.2	1.1	0.9	0.0	0.2	-0.5	10	0.55	0.65				
	1	1.2						1.9	4.5	5.3	0.3	1.2	0.6	0.0	0.2	-0.3	13	0.61	0.41				

Details of micro calculations for Korea

	Ca	se		Base	eline (I	Macro)					Ex	tensio	on (Mi	cro)				
Country	Theta	vk / vp (US, 2006)	CEW growth	v(c)	pop term	cons term	Pop share of growth (in %)	CEW growth	v_p	v_k	pop term	cp term	ck term	leisure term	quality of kids term	quantity of kids term	Pop share of growth (in %)	c_p	c_k
	0.8	1						5.0	4.2	4.1	1.9	1.5	1.1	0.6	0.7	-0.8	38	0.47	0.4
	0.6	1						5.1	4.2	4.2	1.8	1.4	1.5	0.6	0.7	-0.9	36	0.45	0.48
	1	1						5.0	4.2	4.1	2.0	1.5	0.9	0.6	0.7	-0.7	40	0.49	0.33
	0.8	0.8						5.4	4.2	3.2	2.3	1.5	1.1	0.6	0.7	-0.8	42	0.47	0.4
KOR	0.6	0.8	4.4	4.1	1.7	2.6	40	5.4	4.2	3.2	2.2	1.4	1.5	0.6	0.7	-0.9	40	0.45	0.48
	1	0.8						5.4	4.2	3.1	2.4	1.5	0.9	0.6	0.7	-0.7	44	0.49	0.33
	0.8	1.2						4.6	4.2	5.1	1.5	1.5	1.1	0.6	0.7	-0.8	32	0.47	0.4
	0.6	1.2					-	4.7	4.2	5.1	1.4	1.4	1.5	0.6	0.7	-0.9	31	0.45	0.48
	1	1.2						4.6	4.2	5.1	1.6	1.5	0.9	0.6	0.7	-0.7	34	0.49	0.33